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Abstract |

This paper considers estimation of normal mean @ when the variance is unknown,
using the LINEX loss function. The unique Bayes estimate of @is obtained when the
precision parameter has an Inverse Gaussian prior density.

1. Introduction:

Let X,,...,X, be a random sample from a normal
distribution with p. d. f.

f(x16,'°) = (2 mo?) 2 exp {- (x-6)*/20" }, -0 < X <00
where 8¢ (-0, o) and o £(0,c). This paper considers
estimation of @ when (i) ¢° is known and (ii) o° is a

nuisance parameter, using the LINEX loss function,
which is defined as

L(6,6)=b{e®9.a(§-0)-1)

where b> 0is the scale parameteranda # Oisthe shape
parameter,

The LINEX loss function was introducted by Varian -

[5}and extensively discussed by Zellner [6]. It is useful
when a given positive overestimation error is regarded

as more serious than a negative underestimation error

of the same magnitude (a > 0) or vice versa (a < 0). As
an example, in dam construction an underestimate of
the peak water levealis usually much more serious than
anoverestimation. Another example is the case of real

state assessments, Varian [5] found that the use of the
asymetric LINEX loss function may be more approp-

riate than the squared error loss function. A full
discussion of the properties of the LINEX loss function
may be found in Zellner [6].

When ¢?is known, Zellner [6], showed that using the
LINEX loss, X - a02/2n dominates X and Rojo [3]
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considered the admissibility of the linear estimator cX
+ d relative to the LINEX loss function. He showed
that ¢cX + d is admissible for 8 with respect to the
LINEXloss functionwhenever0<c<lorc=1&d=-
ac® / 2n and otherwise it is inadmissible. Also, see
Sadooghi - Alvandi & Nematollahi [4]. An important
consideration is when X;’s have a common unknown
variance, i.e., o2 is unknown. Zeliner [6] suggested
replacement of 62 by §?= E(X X)*/(n-1)inX-a0?*/2n
and showed that the resultmg estimator uniformly
dominates the sample mean in terms of risk relative to
the LINEX loss. However, we do not know any other
optimal property of the proposed estimator.

In section 2 of this paper we show that the estimator
X -ag?/ 2n, wheno?is known, is the only minimax and
admissible estimators of & in the class of linear
estimators of the form cX + d and in section 3, we
obtain a unique Bayes estimate of @'when 0% is a
nuisance parameter using the LINEX loss function.

2. Minimaxity:

To show minimaxity of X - ag? / 2n under LINEX
loss, when o” is known, itiseasy to verify that the risk of
estimators of the form cX + d is (see Rojo [3])

R (8, cX + d) = b {exp [a%6%?/2n + a (d + §(c-1))]
-a(d +0(c-1))-1} (1)

and so
R (8,X-ac?/2n) = ba’¢*/2n, (which is free from §).

Now since X - ac®/ 2n is admissible and has constant
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risk, it follows from Lemma 3.3 of Lehmann [2]thatitis
minimax. Lo

Now, we verify that X - ag?/2n is the only minimax
and admissible estimator of finthe class of estimators
of the form cX + d wheno?is known, usingthe LINEX
loss function. To see this, note that cX + disadmissible
onlyif0<c<lorc= 1,d=-ao?/2n, andsince R (9,¢X
+ d)is given by (1), using thefactthatexp(X)>1+x+
P2 forallx >0, itfollows that thereis ° <0,ifa>0and
@' > 0if a <0 such that

R (6, cX +d) >sup Io{ (9, X - a0%2n) = ba’e®/2n.

Hence c¢X + d cannotbe minimaxand admissiblewhen
c# landd # -ac®/2n.

Remark 1.1: The class of estimators in section 2 is
restricted to the linear estimators. Note that the classof
all Bayes estimators, using normal priors', and
generalized Bayes estimators, using vague prior, of 0
when o? is known are in the form ¢X + d which is
including the usual estimator of 8.

3. Bayes Estimate:

Let r = 1/o° be the precision which is unknown.
Suppose that conditional on T, 6 has a normal
distribution with mean y and variance 1/Ar, where g, A
(>0) are both known constants, ie.

@it N (u, 1/Ar),
and r has an Inverse Gaussian distribution with known
parameters B anda, i.¢.,

Cm(r) = (a2m)'?rPexp {-a/ 28%r) (r-8)* }-

The reason for the choice of Inverse Gaussian prior
are: (i) certain integral to become convergent, (ii) the
joint prior of (@, r) becomes as a conjugate prior. (See
Remarks 3.1 and 3.2).

Hence, the kernel of joint prior density of fandris

7 (8, 1) a1 exp {- (Ar/2) (6-p)? - (ar/268” + a/2r) }

To work out the Bayes estimate of 6, note that the
kernel of likelihood function is

7(8,1) a2 exp {- —5—— [(6-X)* + ns’]},

wherens? =3 _(X;-X)?. Combiningthe likelihood with
the joint pr'ﬁ)lr density of (8, r), we obtain the joint
posterior density 7 (6, r1X) .r"”" exp {- —;— [(8-X)*+
ns?} - (Ar/2) (0 - p)? - ar/28? - al2r }- )
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One can easily verify that

n(0-X)2+ A(8-m)*=(n+A)(6-n)* + —BA__(X.
" Y'=(n+2A)(6-n)*+ X u)z

{.. }=_(______n-|’;/\)r(0_ n)?-Yr-- g )

T
with

n=(nX + Ap)/(n+ A)
and

2y=ns’+ na

n+A
Hence, (2) reduceg to
7 (8, t)ar"?eF T

From (3), it is clear that
81x,1~N (1, 1/(n + A)r)

o 9. [+ 4
- P 2

exp (2250 71 3)

and
* - Y
7 (tX)a r(n-l)/Ze ar Y

Using the integral representation (cf. Gradshteyn
and Ryzhik, p 346, formula 9),

® oy ——-Px
foxe TP a2 25 K VD Re 020,
Rep>0) 4
where k, () is the modified Bessel function of the third
kind, we obtain (withv= (n+ 1)/2, { = «/2,p = y)

2(n-1)/2

. o2 F-1r
(a/Y)(n+l)/2K(n+1)/2(V'm_) €

7t (tlx) =

Now, one can easily verify that (see Zeliner [6]) the
Bayes estimate of 0 using the LINEX loss is

85 () = - ——log My (-a),

where M, (.) denotes the moment generating function
offx.

To obtain the Bayes estimate of § for our problem,
note that

Myly(t) = E [e*K]
— E {E[¢"), 7]}
=E {exp[nt + t2/2 (m+A)r]}

=e"E {expx[—z—(—nt:_-;-)'/ 1]}

= eﬂty;ez(n*- MY n’(r!x)dr.

Using once aggin the formula (4), withv = (n+1)/2,{
a

=—5-- E-(-r-;-_’%‘—)—and p = v, we obtain
: ‘f L
Me‘x(t) =em [1-t2 /d(n + A)](n+1)/2k(n+l)f2( 2 Y(“ n +A))
) k(n-&l)/(Z e )
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provided @ > t2/(n + A).
Now using (5) and (6) we obtain
nX+Ap _

= 1 -
8g(x) = ey ——a-log{[l

2
k(nn)rz(vzy(“’},aTa))

(Vaye”)

k(n+1y2

a2

(n+x)a ](n+1)/2

provideda > a*/(n + A) (note that yisafunction of the
sample variance). And since 8y (x) is the unique Bayes
estimate of @ w. r. t. joint normal - Inverse Gaussian
prior using the LINEX loss function, hence it is
admissible.

As a special case, taking o = 2a2 /
becomes

(n + 2),85(X)

8p(x) = DXTAR
s(X) )

1 _(n+1)/
= alog{2 (

5 K (n + 1)2(12va7(a42))
K (n+1)2 ({4va/(n+4))

Remark 3.1: Note that for the usual joint Normal -
Gamma conjugate prior, the Bayes estimate of Qusing
LINEX loss function does not exist.

Remark 3.2: 1t is easily seen that the joint prior,
m(0.r) is a conjugate prior by considering that -

and 7 |r) p(r) and 11'*(0|§,
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r) 7r*(r| x)belongs to the same class of density functions.
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Remark 3.3: The result presented in section 3 also
relates to estimation of regression coefficients
and to prediction problems as pointed out on
p-448 of Zellner [6].
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Author’s Note:

Re: On Modality and Divisibility of Poisson and
Binomial Mixtures pg. 202 - 207 Vol. 1 No. 3
Spring 1990

Added in the proof:

The portion of example 3, showing that a Poisson -

mixture with strongly unimodal continuous mixing
distribution is not correct. Indeed, as revealed to the
author by D. N. Shanbhag (private communication),
from aresult in Karlin's book on fotal positivity follows
that the «if» part of theorem 2 for this property also
remains valid.
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